Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans☆

نویسندگان

  • Marek Sebesta
  • Peter Burkovics
  • Szilvia Juhasz
  • Sufang Zhang
  • Judit E. Szabo
  • Marietta Y.W.T. Lee
  • Lajos Haracska
  • Lumir Krejci
چکیده

Homologous recombination (HR) is essential for maintaining genomic integrity, which is challenged by a wide variety of potentially lethal DNA lesions. Regardless of the damage type, recombination is known to proceed by RAD51-mediated D-loop formation, followed by DNA repair synthesis. Nevertheless, the participating polymerases and extension mechanism are not well characterized. Here, we present a reconstitution of this step using purified human proteins. In addition to Pol δ, TLS polymerases, including Pol η and Pol κ, also can extend D-loops. In vivo characterization reveals that Pol η and Pol κ are involved in redundant pathways for HR. In addition, the presence of PCNA on the D-loop regulates the length of the extension tracks by recruiting various polymerases and might present a regulatory point for the various recombination outcomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities

The error-free repair of double-strand DNA breaks by homologous recombination (HR) ensures genomic stability using undamaged homologous sequence to copy genetic information. While some of the aspects of the initial steps of HR are understood, the molecular mechanisms underlying events downstream of the D-loop formation remain unclear. Therefore, we have reconstituted D-loop-based in vitro recom...

متن کامل

Ubiquitin-dependent regulation of translesion polymerases.

In response to DNA damage, TLS (translesion synthesis) allows replicative bypass of various DNA lesions, which stall normal replication. TLS is achieved by low-fidelity polymerases harbouring less stringent active sites. In humans, Y-family polymerases together with Pol zeta (polymerase zeta) are responsible for TLS across different types of damage. Protein-protein interaction contributes signi...

متن کامل

6. Regulation of Y-family translesion synthesis (TLS) DNA polymerases by RAD18

The recruitment of the error-prone Y-Family Translesion Synthesis (TLS) DNA polymerases (Pol , Pol , Pol , and REV1) to damaged chromatin is partly dependent on their association with Lysine 164 (K164)mono-ubiquitylated PCNA. RAD18 is the major PCNA K164-directed E3 ubiquitin ligase in eukaryotic cells and therefore plays potentially important roles in TLS and mutagenesis. Accordingly, there is...

متن کامل

A defect in homologous recombination leads to increased translesion synthesis in E. coli

DNA damage tolerance pathways allow cells to duplicate their genomes despite the presence of replication blocking lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS) and homology directed gap repair (HDGR). TLS pathways involve specialized DNA polymerases that are able to synthesize past DNA lesions with an intrinsic risk of causing point mutations. In cont...

متن کامل

Interplay between replication and recombination in Escherichia coli: impact of the alternative DNA polymerases.

Homologous recombination (HR) and translesion synthesis (TLS) are two pathways involved in the tolerance of lesions that block the replicative DNA polymerase. However, whereas TLS is frequently error-prone and, therefore, can be deleterious, HR is generally error-free. Furthermore, because the recombination enzymes and alternative DNA polymerases that perform TLS may use the same substrate, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013